69 research outputs found

    Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps

    Full text link
    What input signals will lead to synchrony vs. desynchrony in a group of biological oscillators? This question connects with both classical dynamical systems analyses of entrainment and phase locking and with emerging studies of stimulation patterns for controlling neural network activity. Here, we focus on the response of a population of uncoupled, elliptically bursting neurons to a common pulsatile input. We extend a phase reduction from the literature to capture inputs of varied strength, leading to a circle map with discontinuities of various orders. In a combined analytical and numerical approach, we apply our results to both a normal form model for elliptic bursting and to a biophysically-based neuron model from the basal ganglia. We find that, depending on the period and amplitude of inputs, the response can either appear chaotic (with provably positive Lyaponov exponent for the associated circle maps), or periodic with a broad range of phase-locked periods. Throughout, we discuss the critical underlying mechanisms, including slow-passage effects through Hopf bifurcation, the role and origin of discontinuities, and the impact of noiseComment: 17 figures, 40 page

    Structured chaos shapes spike-response noise entropy in balanced neural networks

    Get PDF
    Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. A striking feature of these networks is that they are chaotic. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for the entropy of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complimented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows -- a phenomenon that depends on ``extensive chaos," as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.Comment: 9 pages, 5 figure

    Revisiting chaos in stimulus-driven spiking networks: signal encoding and discrimination

    Full text link
    Highly connected recurrent neural networks often produce chaotic dynamics, meaning their precise activity is sensitive to small perturbations. What are the consequences for how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong source of randomness, suggesting that small changes in stimuli will be obscured by intrinsically generated variability. On the other hand, recent work shows that the type of chaos that occurs in spiking networks can have a surprisingly low-dimensional structure, suggesting that there may be "room" for fine stimulus features to be precisely resolved. Here we show that strongly chaotic networks produce patterned spikes that reliably encode time-dependent stimuli: using a decoder sensitive to spike times on timescales of 10's of ms, one can easily distinguish responses to very similar inputs. Moreover, recurrence serves to distribute signals throughout chaotic networks so that small groups of cells can encode substantial information about signals arriving elsewhere. A conclusion is that the presence of strong chaos in recurrent networks does not prohibit precise stimulus encoding.Comment: 8 figure

    Flexible Phase Dynamics for Bio-Plausible Contrastive Learning

    Full text link
    Many learning algorithms used as normative models in neuroscience or as candidate approaches for learning on neuromorphic chips learn by contrasting one set of network states with another. These Contrastive Learning (CL) algorithms are traditionally implemented with rigid, temporally non-local, and periodic learning dynamics that could limit the range of physical systems capable of harnessing CL. In this study, we build on recent work exploring how CL might be implemented by biological or neurmorphic systems and show that this form of learning can be made temporally local, and can still function even if many of the dynamical requirements of standard training procedures are relaxed. Thanks to a set of general theorems corroborated by numerical experiments across several CL models, our results provide theoretical foundations for the study and development of CL methods for biological and neuromorphic neural networks.Comment: 23 pages, 4 figures. Paper accepted to ICML and update includes changes made based on reviewer feedbac

    Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty

    Full text link
    Among attempts at giving a theoretical account of the success of deep neural networks, a recent line of work has identified a so-called `lazy' regime in which the network can be well approximated by its linearization around initialization. Here we investigate the comparative effect of the lazy (linear) and feature learning (non-linear) regimes on subgroups of examples based on their difficulty. Specifically, we show that easier examples are given more weight in feature learning mode, resulting in faster training compared to more difficult ones. In other words, the non-linear dynamics tends to sequentialize the learning of examples of increasing difficulty. We illustrate this phenomenon across different ways to quantify example difficulty, including c-score, label noise, and in the presence of spurious correlations. Our results reveal a new understanding of how deep networks prioritize resources across example difficulty

    Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    Full text link
    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). What are the neuronal mechanisms responsible for these changes and how does targeted stimulation by a BBCI shape population-level synaptic connectivity? The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites are strengthened for spike-stimulus delays consistent with experimentally derived spike time dependent plasticity (STDP) rules. However, the relationship between STDP mechanisms at the level of networks, and their modification with neural implants remains poorly understood. Using our model, we successfully reproduces key experimental results and use analytical derivations, along with novel experimental data. We then derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered stimulation in different regimes of cortical activity.Comment: 35 pages, 9 figure

    Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics

    Full text link
    A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity matrices to be orthogonal or unitary. This ensures eigenvalues with unit norm and thus stable dynamics and training. However this comes at the cost of reduced expressivity due to the limited variety of orthogonal transformations. We propose a novel connectivity structure based on the Schur decomposition and a splitting of the Schur form into normal and non-normal parts. This allows to parametrize matrices with unit-norm eigenspectra without orthogonality constraints on eigenbases. The resulting architecture ensures access to a larger space of spectrally constrained matrices, of which orthogonal matrices are a subset. This crucial difference retains the stability advantages and training speed of orthogonal RNNs while enhancing expressivity, especially on tasks that require computations over ongoing input sequences
    • …
    corecore